

Copernicus Climate Change Service

Bologna 13 March 2025

Carlo Buontempo & Anca Brookshaw
C3S team and contractors

A brief story of C3S@ECMWF

2014 C3S launch

2016 Sentinel 1B & 3A

2018 CDS becomes operational,
Sentinel 3B

2023

Sentinel 4 – part 1

The district exchange is one of the rocks in the foundation of the World Meteorological Organization.

Congunitations to Copernical SCANES for the release of the Copernical SCANES for the Cope

2024 Climate Atlas

2017 💥 2020 💥

Sentinel 2A, Sentinel 2B & 5P Paris agreement

2015

European Green Deal,
Sentinel 6

2023 Global Stocktake

PROGRAMME OF THE

EUROPEAN UNION

C3S: a truly European effort

195

entities involved as contractor or subcontractor

From 24 countries

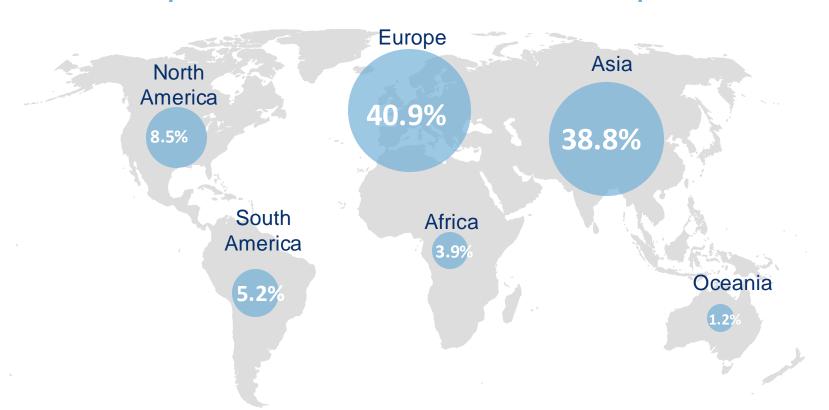
EU/ ECMWF MS/CS
Two international organisations **two** third countries

80

Signed contracts

~90 M €

total value of signed Framework Agreements



C3S: the numbers

Worldwide users

Open climate data has never been more important

Direct users

>25.000

350,000

Indirect users

Several millions (billions?)

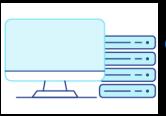
Requests

800 million

166 PB

Top 5 dataset groups

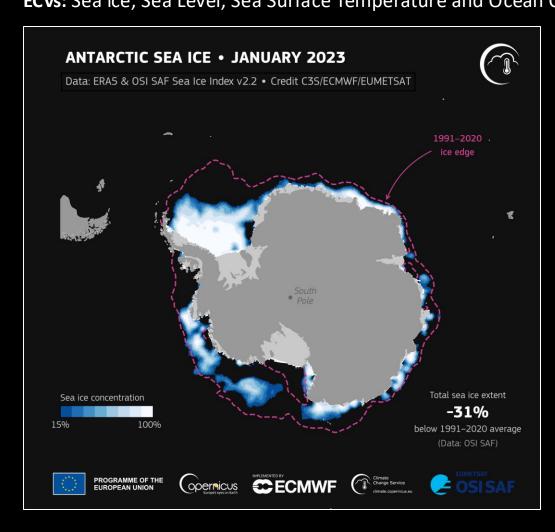
ERA5, ERA5 land, seasonal forecast, CORDEX, CARRA, CERRA, ORAS5, ECVs



Observations

Reanalysis

Predictions and projections



Ocean domain

Consortium led by Mercator. Close cooperation with CMEMS, ESA-CCI and EUMETSAT **ECVs:** Sea ice, Sea Level, Sea Surface Temperature and Ocean Colour.

Monthly mean sea ice concentrations around Antarctica in 2023

Data: ERA5 (sea ice concentration), EUMETSAT OSI SAF Sea Ice Index v2.2 (sea ice extent anomaly).

Credit: C3S/ECMWF/EUMETSAT

ECV programme - status & evolution

CRYOSPHERE

Surface

Plankton

SURFACE OCEAN PHYSICS

Sea Surface

Surface Wind

SURFACE ATMOSPHERE

C3S2 313c **Land Hydrology**

ANTHROPOSPHERE

HYDROSPHERE

C3S 313e **Land Biosphere**

C3S2 313d

Cryosphere

Contract

C3S2_313a

C3S2 313b

Atmospheric Composition

Atmospheric Physics

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Ocean Surface Sea Surface Heat Flux Salinity

OCEAN BIOLOGY, ECOSYSTEMS

SUBSURFACE OCEAN PHYSICS

OCEAN BIOGEOCHEMISTRY

Transient

Inorganic Carbon

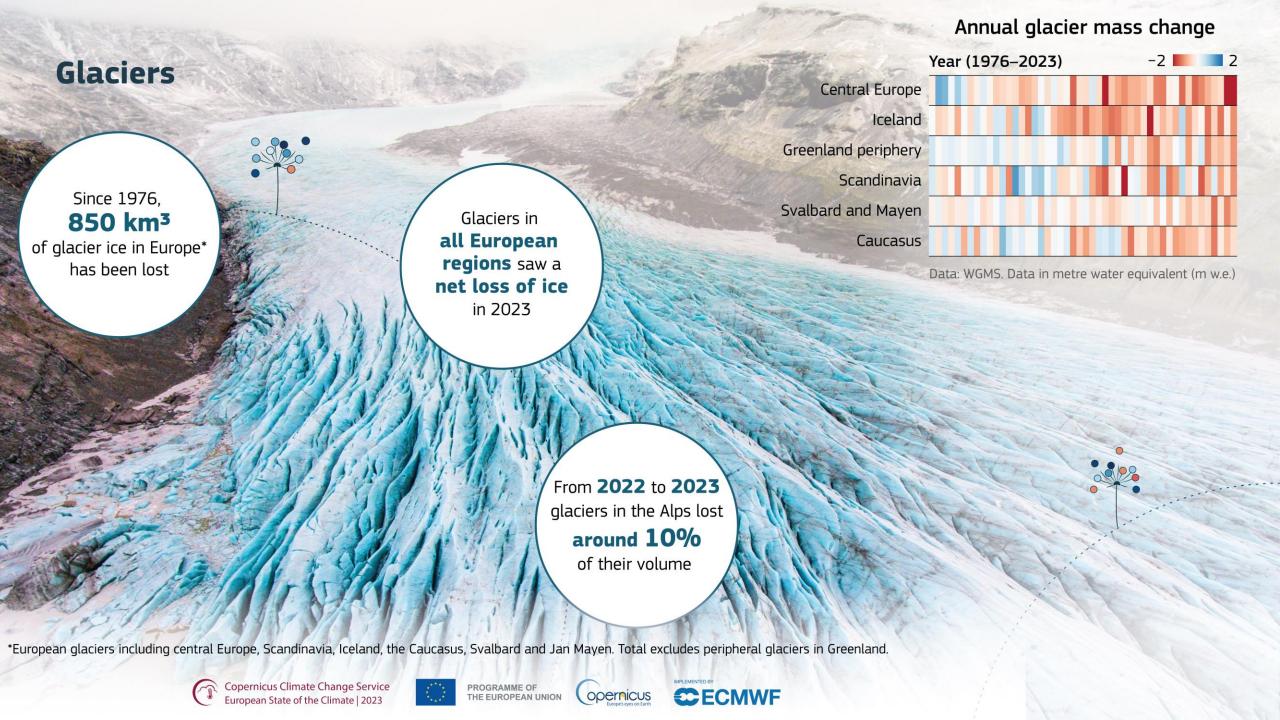
Leaf Area

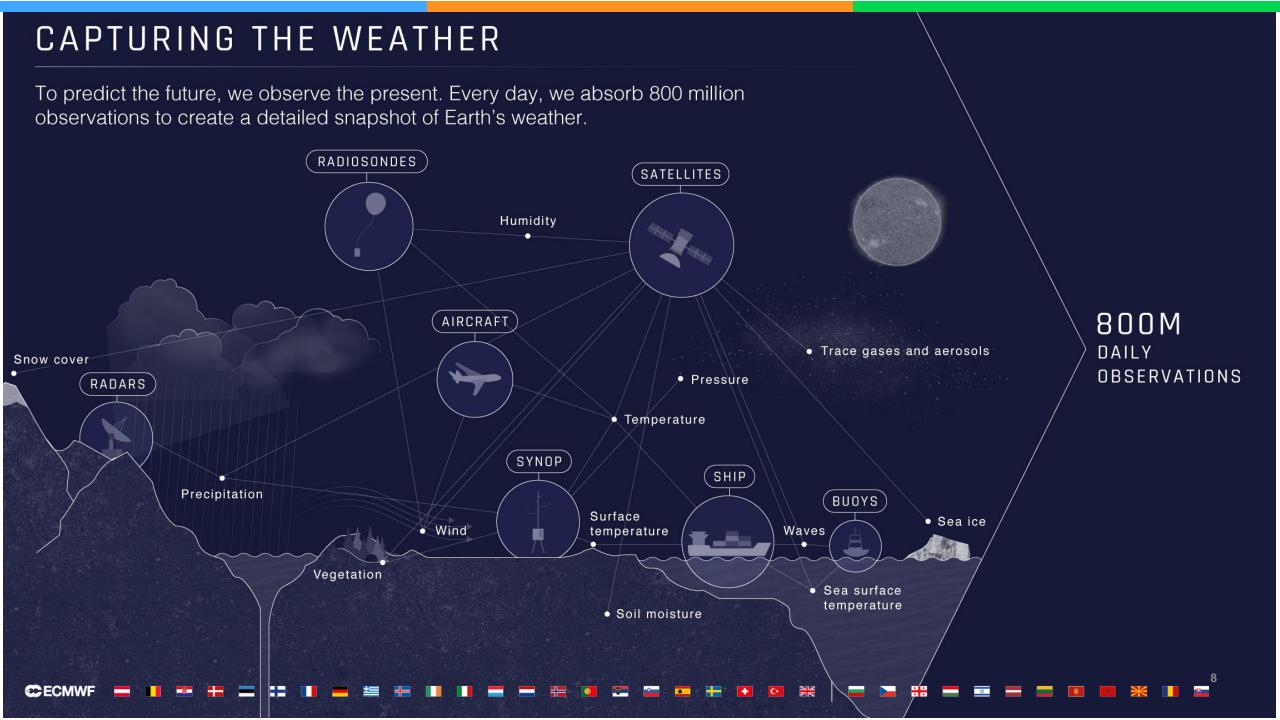
BIOSPHERE

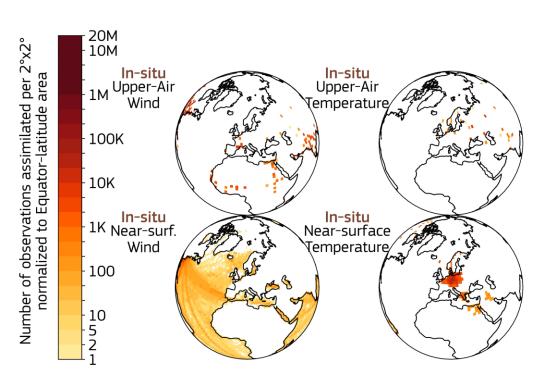
EUMETSAT

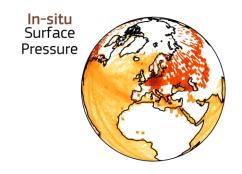
eesa

Nitrous Oxide




Observations Reanalysis Predictions and projections

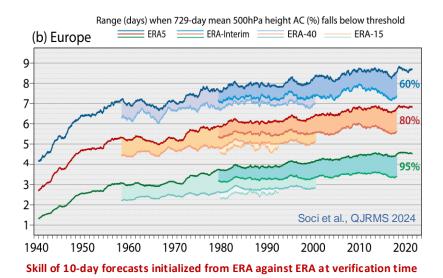




Satellites: a revolution in our ability to understand the climate

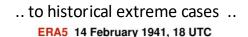
Observations assimilated in ERA5

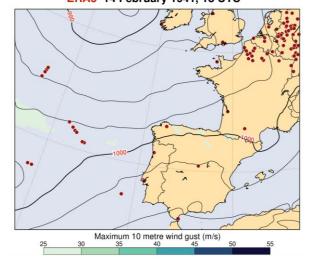
January 1940 to December 1940



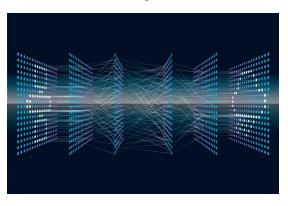
ERA5 global reanalysis 31km, hourly from 1940 to 5 days behind time

ERA5 has over **170,000 users** providing **petabytes** of climate data

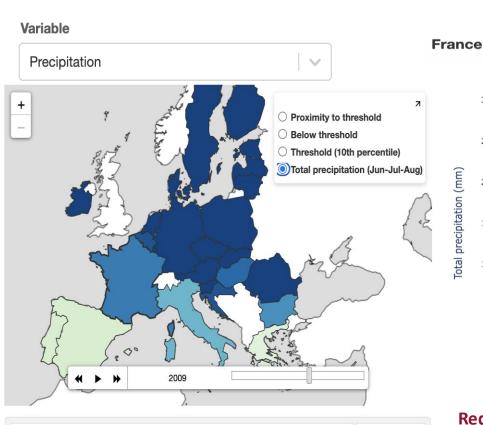

ERA5 was built on the shoulders of other ECMWF reanalyses



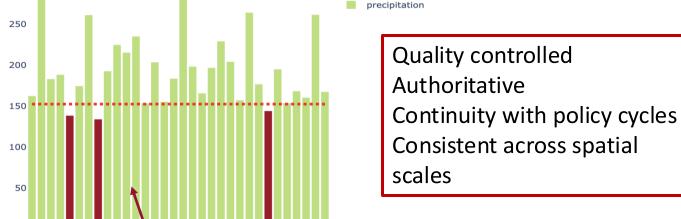
From accurate timely climate monitoring, ...


- 1. The first year warmer than 1.5°C above the pre-industrial average
- 2. Record number of days above 1.5°C in 2024

.. and leading training set for data-driven weather forecasting and much more ...



Policy-driven example of DG-ENV



Total precipitation (mm)

Proximity to threshold (%)

EU Directive 2016/2284 on the reduction of National Emissions of Certain atmospheric pollutants.

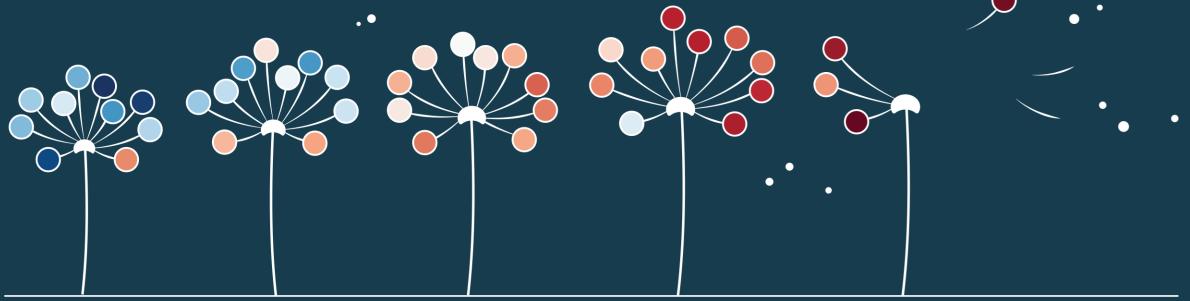
The Directive establishes the emission reduction commitments for the Member States.

Red bars: Dry summer for the selected Member State

exceptionally cold winter and exceptionally dry summers, when flexibility article 5.2 of the Directive may be applied.

Below threshold

300


JJA 2010

EUROPEAN STATE OF THE CLIMATE

2023

- ~110 contributors from across the C3S, WMO and wider communities
- 58 datasets used
- ~210 charts
- ~80,000 words across 26 chapters and 10 climate indicators
- graphically-designed summary PDF
- interactive key events webpage
- 21,500 website views in the first 3 days following the launch

• \sim 150 attendees to the media briefing, and \sim 200 to the launch event

Economic value of reanalyses

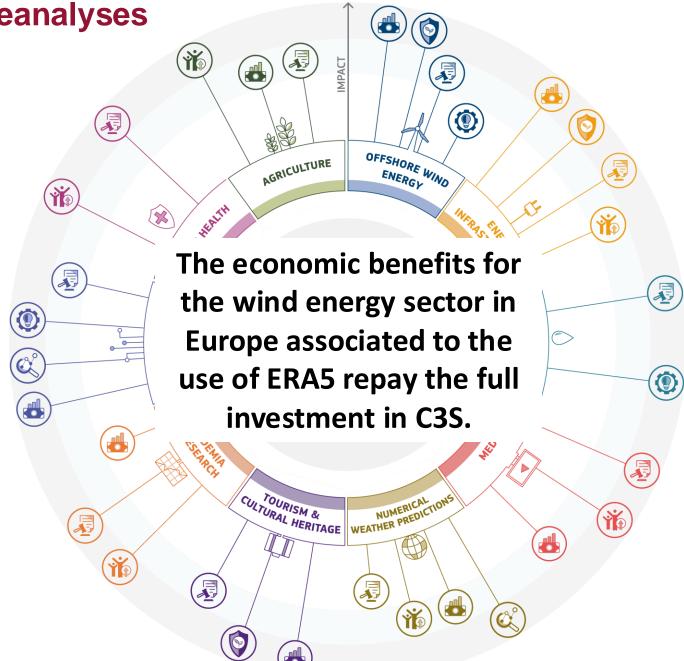
ERA5 is the current state-of-the-art climate reanalysis of ECMWF

It provides global, hourly estimates of the atmospheric, ocean-wave and landsurface variables.

From 1940 onwards

ERA5-Land is a land surface dataset produced at higher resolution and forced by ERA5 surface fields
From 1950 onwards

Both are maintained 5 days behind real time



Data Resolution

9km (ERA5-Land) to 31km (ERA5)

137 levels: from the surface to 0.01 hPa

T Hourly

Reanalysis users

170 000 +

since 2018

Legend

Economic

Environmental

Societal Well-Being

Regulatory

Scientific

Innovative

ERA6: 8 years' additional ECMWF R&D and improved computation capacity

Configuration: 75 years of reanalysis, to be maintained close to real time once completed, based on IFS Cy49r2

- Higher horizontal resolution of **14km** (TCo799) for all components (ERA5 31km for atmosphere, 40km for waves)
- Improving the estimate of historical extreme weather
- Uncertainty estimate at 28km (TCo399) from 11-member ensemble (63km for ERA5)

Science (selected):

- Coupled ocean, one-way coupled with ORAS6, providing a consistent representation of ocean-atmosphere processes
- Improved realism, such as introduction of an urban tile
- Improved treatment of systematic model errors with benefit on the quality of climate trends
- Evolve CO₂ in RTTOV and CH₄ for methane oxidation (better lower stratosphere humidity)
- Improved GHG and aerosol forcing, new HLO ozone model (+ prognostic with radiation)
- Snow on sea ice and reduce snow depth bias and inconsistencies in general
- Better forcing for large lakes, better initialization soil moisture (from CERISE)
- Resolve several other ERA5 known issues

Ingest the best observations:

- Satellite+ in-situ reprocessing and data rescue
- Assimilation of T2m observations in 4D-Var

Products: based on user requirements

- 3D+2D ocean parameters
- Hourly, for extended list of (new) parameters, e.g., Rh2m, clear-air turbulence (CAT)
- Height levels for the lowest part of the atmosphere
- Daily in addition to monthly precalculated statistics

Geological Survey of Denmark
Max. number of days with reports: 12083
between 1990-06-01 and 2023-06-30

ERA6: how good is it likely to be?

ig9j vs ERA5 MOSAiC scorecard

dates=[2019-10-01 00:00:00,2019-10-01 12:00:00,2019-10-02 00:00:00,...,2020-08-21 00:00:00,2020-08-21 12:00:00] steps=[24, 48, 72, 96, 120, 144, 168, 192, 216, 240] vstreams=(cntri:['era_an', 'era_ob'], exper:['qrdx_era6_det_an', 'qrdx_era6_det_ob']) classs=(cntri:ea, exper:rd) streams=(cntri:wave, exper:['lwda', 'lwwv']) expvers=(cntri:0001, exper:ig9)) reftypes=['an', 'ob']

Scorecard ERA6 (TCo799 49r2-v7 vs T₁639 41r2, Oct 2019 – Aug 2020) **vs ERA5**

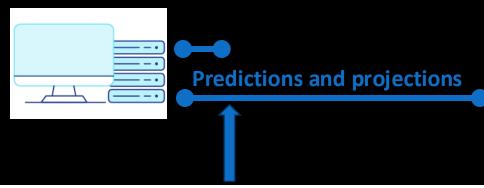
□ n.hem □ s.hem □ tropics □ europe □ n.atl □ n.amer □ n.pac □ e.asia □ austrz □ arctic □ antarctic (□ all)

shaded boxes for confidence boundaries: □ 95% □ 50%/95% □ 95%/99.7% || □ significance triangles || □ bars || □ sample size

		n.h		 nem	 gnificance trian			 ati	 mer				isia	 stnz		ctic	 arctic
	-			 	 		ope	 	 	*****	pac			 			
			***************************************	 rmsef/sdef	 rmser/saer			 	 ***************************************					 			
inz 1	100																
2	250																
	500																
8	850																
msl																	
t 1					 												
	850																
2t																	
vw 1	100																
2	250																
5	500																
8	850																
10ff																	
r 2															_		
10ff@sea														 			
						1						1					
swh																	
mwp												J					
	100 250																
	500																
	8 50 100																
	250																
	500																
	850																
2t	100																
	100 250																
	500																
	850																
10ff																	
	250 700																
2d	. 50																
tcc																	
tp																	
swh																	

ccaf=Anomaly correlation,rmsef=Root mean square error,sdav=Standard deviation of analysis anomaly,sdef=Standard deviation of forecast error,seeps=Stable Equitable Error in Probability Space

red = the experiment (esuite) is worse than the control. blue = the experiment (esuite) is better than control. purple = the experiment is more active than the control. green = the experiment is less active than control.



Observations

Reanalysis

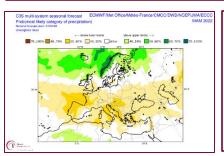
C3S climate prediction: seasonal timescales

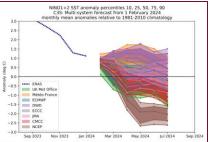
DATA PRODUCTS

cds.climate.copernicus.eu

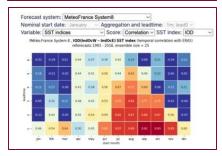
- ☐ Datasets available in the Climate Data Store
 - Atmosphere
 - o daily and subdaily data (6h, 12h, 24h)
 - monthly statistics (mean, max, min, standard deviation)
 - o bias corrected data (monthly anomalies)
 - Ocean monthly means
- Multi-system retrospective forecasts and real-time forecasts, the latter published on 6th (ECMWF) and 10th day of month (the rest)

PROGRAMME OF THE


EUROPEAN UNION


GRAPHICAL PRODUCTS

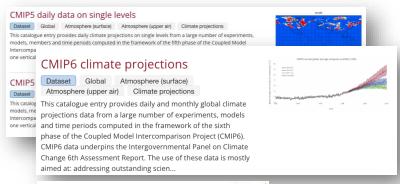
climate.copernicus.eu/charts/packages/c3s_seasonal/


Products for individual contributing systems and multi-system combination

Total precipitation
Near-surface temperature and wind
Mean sea-level pressure
Sea surface temperature
Sea ice concentration
Geopotential height at 500 hPa
Temperature at 850 hPa

Sea surface temperature NINO regions Sea surface temperature Indian Ocean Zonal mean wind at 10hPa

Temporal correlation Relative Operating Characteristic (ROC) score Ranked Probability Score (RPS)


C3S climate prediction and projection: data

CMIP6

Global climate projections

- operational data access
- quality control
- data tutorials

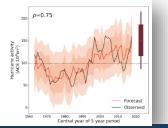
Decadal predictions

climate.copernicus.eu

CORDEX regional climate model data on single levels

Dataset Europe Atmosphere (surface) Atmosphere (upper air) Climate projections

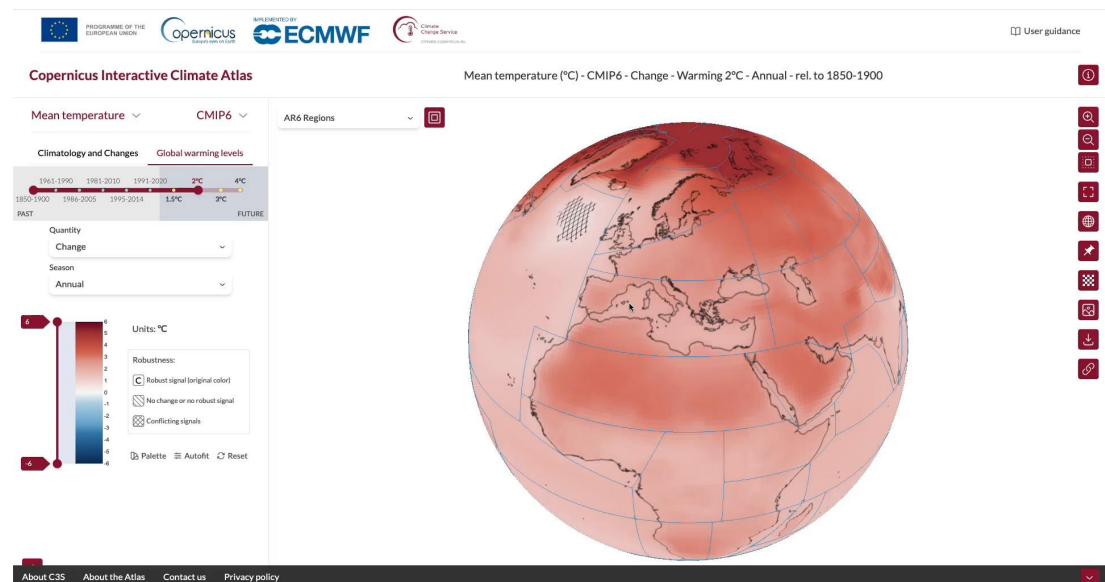
This catalogue entry provides Regional Climate Model (RCM) data on single levels from a number of experiments, models, domains, resolutions, ensemble members, time frequencies and periods computed over several regional domains all over the World in the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). The term "single levels" is used to express that the variables are 2...



CMIP6 predictions underpinning the C3S decadal prediction prototypes

Global Atmosphere (surface) Atmosphere (upper air) Climate projections

This catalogue entry provides daily and monthly global climate model data from Decadal Climate Predictions Project (DCPP) experiments, part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The decadal data in the Climate Data Store (CDS) are a quality-controlled subset of the full DCPP. CMIP6-DCPP data addresses the ability of the climate system to be predicted on annual, m..



C3S climate prediction and projection: user interface

Supporting European institutions – the European Environment Agency

Historical and projected evolution of seasonal Tropical Nights in

Interactive plot showing the observed seasonal Tropical Nights along with the median and likely values (66% probability of occurrence)

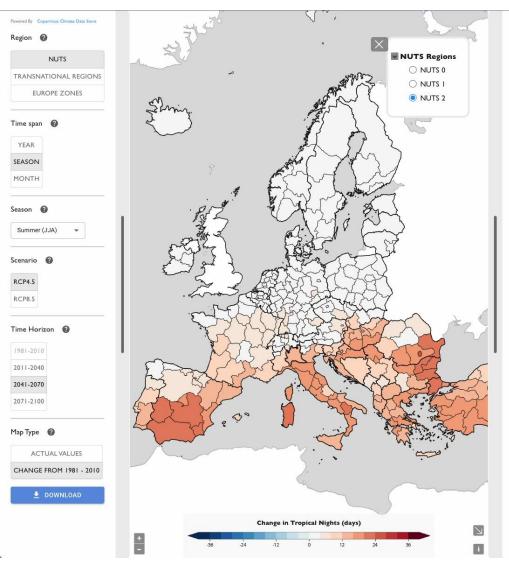
envelope from an ensemble of climate models

RCP4.5 RCP8.5 All scenarios

Nights in Lombardia (Summer

average of the seasonal Tropical Nights deviation from the 1981-2010 average, values

are the median and likely values (66%


Interactive plot showing the 30-year rolling

Projected trend of seasonal Tropical

Lombardia (Summer (JJA))

Lombardia

The ECDE supports EEA's contribution to the Mission on Adaptation, and member states / regions climate adaptation planning

The ECDE provides:

- Access to key climate hazard information derived from an ensemble of bias-adjusted EURO-CORDEX projections (updated when next gen of CORDEX available via CDS)
- 37 published indicators
- Consistency in reference periods, future periods and emission scenarios across
- Information for Europe's transnational regions
- For most indicators, yearly updates using C3S reanalyses to monitor climate hazards

https://climate-adapt.eea.europa.eu/en/knowledge/european-climate-data-explorer

PROGRAMME OF THE

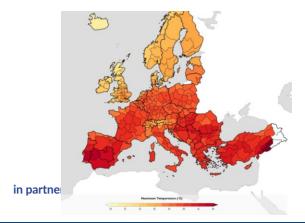
EUROPEAN UNION

Supporting European institutions – the European Investment Bank

This activity is aimed at aiding the EIB in their own climate risk screening and assessments of investment project

NACE code, sensitivity matrix, country hazard filter, economic lifetime etc.

C3S-based hazard matrix connecting hazards to climate impact indicators



EIB-C3S partnership to connect Sectors & Subsectors to *Climate Impact Indicators* and their evolution in time: current & under climate scenarios

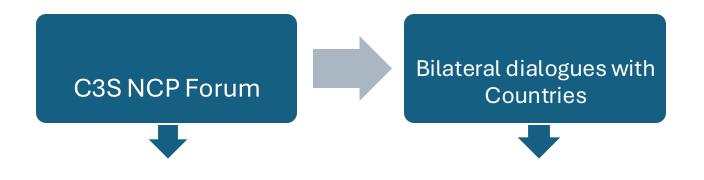
EIB Climate Risk Assessment

- Data interface to ECMWF
- EIB owned risk-based rules
- Geospatial analysis

Category	Chronic Hazards	Acute Hazards					
Tamanamatura	Changing temperatures (air, freshwater, marine)	Heat wave					
Temperature - related	Heat stress	Cold wave frost					
relateu	Temperature variability	Wildfires					
	Permafrost thawing						
	Changing wind patterns	Cyclone, hurricane, typhoon					
Wind-related		Storms (including blizzards, dust and sandstorms)					
		Tornadoes					
	Changing precipitation patterns and types (rain, hail, snow/ice)	Drought					
	Precipitation or hydrological variability	Heavy precipitation (rain, hail, snow, ice)					
Water - related	Ocean acidification	Flood (coastal, fluvial, pluvial, ground water)					
	Saline intrusion	Glacier Lake outburst					
	Sea level rise						
	Water stress						
	Coastal erosion	Avalanche					
Solid-mass related	Soil degradation	Landslide					
Solid-mass related	Soil erosion	Subsidence					
	Solifluction						

Classification of climate related hazards as defined by the EU Taxonomy regulation

Outlook and conclusions

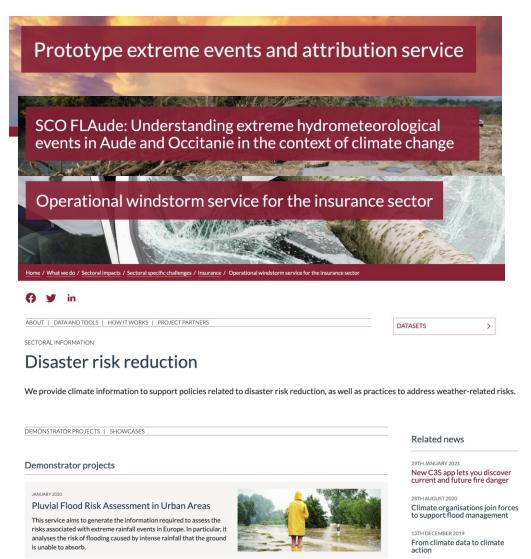


National collaboration programme - Joint Coordination Office

WP3 Liaison with C3S and ECMWF

- Platform to engage with public authorities at national level with all countries (48 months) to:
 - facilitate dialogue
 - raise awareness on the C3S service offer and evolution,
 - to discuss gaps and to enhance cohesion on the applicability of C3S data and products at both national and transboundary levels C3S NCP Forum

Close coordination with Pillar 1 "Enhancing User Intelligence"



Operational attribution: modular access to information on extremes

Operational access to extreme event information including:

- Long-term observed changes in extremes and their attribution
- Extended information on types of events in a changing climate (e.g. factsheets or similar)
- Extend number of tools for extreme event analysis
 - Consistency with climate projections
- NRT daily software suite similar to the (extended/evolved)
 C3S monthly bulletin suite
- Triggering mechanism via the Extreme Forecast Index (or similar)
- Fitness-for-purpose of data sets for extreme analysis
- Enhanced adoption of AI-based tools



Key achievements of C3S

- ➤ Recognised global voice on climate; informing EU institutions, the IPCC and UN institutions.
- ➤ An authoritative global provider of standardised climate data across all time-scales and sub-disciplines, all free and open at the point of use.
- ➤ A trusted source of climate information for media and the general public.
- ➤ A open climate toolkit empowering companies and administrations in the management of their climate risks.
- Supported by a pan-European effort with offices in three countries and contracts/agreements/MOUs with all EU Member States and Copernicus contributing countries.

Questions

ECMWF Copernicus

Copernicus ECMWF

@copernicusecmwf.bsky.social

@carlobuontempo.bsky.social

@copernicusecmwf

Copernicus EU Copernicus ECMWF

copernicus.eu climate.copernicus.eu